AD Parameter
Description of experimental_plan.yaml
To apply AI Contents to your data, you need to input data information and the Contents features into the experimental_plan.yaml file. When you install AI Contents in the solution folder, you can find a default experimental_plan.yaml file for each content under the solution folder. By inputting 'data information' and modifying/adding 'user arguments' provided by each asset, you can run ALO to create a data analysis model with your desired settings.
Structure of experimental_plan.yaml
The experimental_plan.yaml file contains various settings required to run ALO. You can use AI Contents immediately by modifying the 'data path' and 'user arguments' sections of these settings.
Input Data Path (external_path
)
- Parameters under
external_path
are used to specify the file paths for loading and saving files. Ifsave_train_artifacts_path
andsave_inference_artifacts_path
are not provided, the modeling outputs are saved in the default pathstrain_artifacts
andinference_artifacts
folders.
external_path:
- load_train_data_path: ./solution/sample_data/train
- load_inference_data_path: ./solution/sample_data/test
- save_train_artifacts_path:
- save_inference_artifacts_path:
Parameter Name | Default | Description and Options |
---|---|---|
load_train_data_path | ./sample_data/train/ | Enter the folder path where the training data is located (Do not enter the CSV file name) |
load_inference_data_path | ./sample_data/test/ | Enter the folder path where the inference data is located (Do not enter the CSV file name) |
User Parameters (user_parameters
)
user_parameters
contain the asset name understep
. Belowstep: input
indicates the input asset stage.args
contains user arguments for the input asset (step: input
). User arguments are setting parameters for data analysis provided by each asset. For more details, see the User Arguments section below.
user_parameters:
- train_pipeline:
- step: input
args:
- file_type
...
ui_args:
...
Explanation of User Arguments
What are User Arguments?
User arguments are parameters for configuring each asset's operation, entered under args
in each asset step of the experimental_plan.yaml file. Each asset in AI Contents' pipeline provides user arguments to apply various features to your data. Users can modify and add user arguments to create a modeling process that fits their data by referring to the guide below.
User arguments are divided into "Mandatory Arguments," which are pre-written in the experimental_plan.yaml file, and "Custom Arguments," which users add by referring to the guide.
Mandatory Arguments
- Mandatory arguments are basic arguments that are immediately visible in the experimental_plan.yaml file. Most mandatory arguments have default values. If an argument has a default value, users do not need to set a value for it; it will operate with the default value.
- Among the mandatory arguments in the experimental_plan.yaml file, users must set values for data-related arguments (e.g., x_columns, y_column).
Custom Arguments
- Custom arguments are not written in the experimental_plan.yaml file but are features provided by the asset that users can add to the experimental_plan.yaml file. Add them under the 'args' of each asset.
AD's pipeline consists of the Input - Readiness - Modeling (train/inference) - Output assets, and user arguments are configured differently for each asset's function. Start with the mandatory user arguments pre-written in the experimental_plan.yaml file, and add user arguments to create an AD model that perfectly fits your data!
Summary of User Arguments
Below is the list of AD's user arguments. Click on the 'Argument Name' to jump to the detailed description of that argument.
Default
- The 'Default' column shows the default value of the user argument.
- If there is no default value, it is indicated with '-'.
- If the default value follows a logic, it is indicated with 'See description'. Click on the 'Argument Name' for detailed description.
ui_args
- The 'ui_args' column indicates whether the
ui_args
feature, which allows changing argument values in the AI Conductor's UI, is supported. - O: Enter the argument name under
ui_args
in the experimental_plan.yaml to change argument values in the AI Conductor UI. - X: The
ui_args
feature is not supported. - For more details about
ui_args
, see the following guide: Write UI Parameter - The AD experimental_plan.yaml includes
ui_args_detail
for user arguments that can beui_args
.
Mandatory User Configuration
- The 'Mandatory User Configuration' column indicates user arguments that must be checked and changed by the user to run AI Contents.
- O: Arguments generally related to project and data information that users must check before modeling.
- X: If the user does not change the values, modeling proceeds with the default values.
Asset | Argument Type | Argument Name | Default | Description | Mandatory User Configuration | ui_args |
---|---|---|---|---|---|---|
Input | Custom | file_type | csv | Enter the file extension of the input data. | X | X |
Input | Custom | encoding | utf-8 | Enter the encoding type of the input data. | X | X |
Readiness | Mandatory | x_columns | - | Enter the columns for anomaly detection. | O | O |
Readiness | Mandatory | time_column | - | Enter the column with time values to identify each point. | O | O |
Readiness | Mandatory | groupkey | - | If you want to detect anomalies by grouping points, enter the column for group information. Leave blank if not grouping. | O | X |
Readiness | Custom | y_columns | - | If labels exist, enter the columns containing label information for each point. If there are multiple x columns, enter the same number of columns as a list. | X | X |
Preprocess | Mandatory | handling_missing | drop | Decide how to handle rows with missing values. | O | X |
Preprocess | Mandatory | handling_scaling | none | Decide how to scale the data. | O | X |
Preprocess | Mandatory | drop_duplicate_time | True | Decide whether to drop rows with duplicate time column values, keeping only one row. | O | X |
Train | Mandatory | train_models | [dt,sr,stl_dt,stl_sr] | Enter the models to use for anomaly detection. | O | X |
Train | Mandatory | decision_rule | two | Select the direction for anomaly detection. If 'two', detect anomalies above and below the threshold. | O | X |
Train | Mandatory | hpo_repeat | 20 | Decide the number of Bayesian optimization iterations. | O | X |
Train | Mandatory | return_all | True | Decide whether to receive results from all models used. | O | X |
Train | Mandatory | objective_cal_metric | distance | Decide the score metric for Bayesian optimization. | O | X |
Train | Custom | rolling_window | [10, 100, "int"] | Search space for rolling_window parameter in Bayesian optimization of the dynamic_threshold model. | X | X |
Train | Custom | threshold_margin | [0.1, 2, "float"] | Search space for threshold_margin parameter in Bayesian optimization of the dynamic_threshold model. | X | X |
Train | Custom | ma_es | [1, 2, "int"] | Search space for ma_es parameter in Bayesian optimization of the dynamic_threshold model. | X | X |
Train | Custom | window_size_amp | [3, 35, "int"] | Search space for window_size_amp parameter in Bayesian optimization of the spectral_residual model. | X | X |
Train | Custom | window_size_score | [40, 300, "int"] | Search space for window_size_score parameter in Bayesian optimization of the spectral_residual model. | X | X |
Train | Custom | threshold_level | [99, 99.9, "float"] | Search space for threshold_level parameter in Bayesian optimization of the spectral_residual model. | X | X |
Train | Custom | stl_dt_period | [7, 21, "int"] | Search space for stl_dt_period parameter in Bayesian optimization of the stl_dt model. | X | X |
Train | Custom | stl_dt_seasonal | [4, 8, "int"] | Search space for stl_dt_seasonal parameter in Bayesian optimization of the stl_dt model. | X | X |
Train | Custom | stl_dt_threshold_margin | [1, 3, "float"] | Search space for stl_dt_threshold_margin parameter in Bayesian optimization of the stl_dt model. | X | X |
Train | Custom | stl_sr_window_size_amp | [3, 35, "int"] | Search space for stl_sr_window_size_amp parameter in Bayesian optimization of the stl_sr model. | X | X |
Train | Custom | stl_sr_window_size_score | [40, 300, "int"] | Search space for stl_sr_window_size_score parameter in Bayesian optimization of the stl_sr model. | X | X |
Train | Custom | stl_sr_threshold_level | [99, 99.9, "float"] | Search space for stl_sr_threshold_level parameter in Bayesian optimization of the stl_sr model. | X | X |
Train | Custom | stl_sr_period | [7, 21, "int"] | Search space for stl_sr_period parameter in Bayesian optimization of the stl_sr model. | X | X |
Train | Custom | stl_sr_seasonal | [4, 8, "int"] | Search space for stl_sr_seasonal parameter in Bayesian optimization of the stl_sr model. | X | X |
Inference | Mandatory | model_select | all | Decide which model to use for inference. | O | X |
Detailed Description of User Arguments
Input asset
file_type
Enter the file extension of the input data. Currently, AI Solution development only supports CSV files.
- Argument Type: Mandatory
- Input Type
- string
- Input Values
- csv (default)
- Usage
- file_type: csv
- ui_args: X