VC Release Note
v1.5.3
May. 30, 2024
Improvements Remove unused functions
- Remove check_memory
Bug Fixes Update for inference_summary.yaml
- Change key format of probability
Compatibility: ALO v2.5.1 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.5.2
May. 30, 2024
Improvements Rename content's name
- Change content's name from Computer Vision AI to Vision Classification
Compatibility: ALO v2.3.4 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.5.1
May. 10, 2024
Improvements Change output image size
- Instead of resized image, save original image into output folder for showing the image at edge application
Bug Fixes Fix saving image color bug
- Change image saving function with RGB
Compatibility: ALO v2.3.3 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.5.0
Apr. 17, 2024
Improvements Improve inference runtime
- Achieving Approximate 1-Second Inference Time in Splunk Edge Hub(SEH) Execution
Compatibility: ALO v2.4.0 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.4.0
Mar. 29, 2024
Bug Fixes Change image path using relative path
- When image path is written by '/nas001/.../image.png' closed system can't access to such format
Fix data type error in ui_args
- Add function to change ui_args data type
Compatibility: ALO v2.3.1 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.3.1
Mar. 14, 2024
New Features Checking memory and runtime
- Add check memory and runtime function to train and inference asset
Improvements Update for Mellerikat requirements
- Support ALO2.3
Bug Fixes Available on solution registration
- Fix ui_args_detail's argument naming error
Compatibility: ALO v2.3 Tested on c6i.2xlarge - CPU: 6 / MEM: 14G, p3.2xlarge - CPU: 6 / MEM: 55G / GPU: 1(16G) / CUDA 11
v1.3.0
Feb. 29, 2024
New Features
Explainable AI(XAI)
- Added functionality to assist both end-users (Edge) and analysts (Conductor) in understanding why a certain classification occurred based on specific areas within the image.
Improvements Update for Mellerikat requirements
- Move extra output files
- Erase label_names, y_column, path_column user parameters from
experimental_plan.yaml
- Use ALO's logging api
Bug Fixes
Clean code and Fix data error
- Erase unnecessary functions
- Fix channel duplicating error
Compatibility: ALO v2.2.1