FCST Parameter
experimental_plan.yaml 설명
내가 갖고 있는 데이터에 AI Contents를 적용하려면 데이터에 대한 정보와 사용할 Contents 기능들을 experimental_plan.yaml 파일에 기입해야 합니다. AI Contents를 solution 폴더에 설치하면 solution 폴더 아래에 contents 마다 기본으로 작성되어있는 experimental_plan.yaml 파일을 확인할 수 있습니다. 이 yaml 파일에 '데이터 정보'를 입력하고 asset마다 제공하는 'user arugments'를 수정/추가하여 ALO를 실행하면, 원하는 세팅으로 데이터 분석 모델을 생성할 수 있습니다.
experimental_plan.yaml 구조
experimental_plan.yaml에는 ALO를 구동하는데 필요한 다양한 setting값이 작성되어 있습니다. 이 setting값 중 '데이터 경로'와 'user arguments'부분을 수정하면 AI Contents를 바로 사용할 수 있습니다.
데이터 경로 입력(external_path
)
external_path
의 parameter는 불러올 파일의 경로나 저장할 파일의 경로를 지정할 때 사용합니다.save_train_artifacts_path
와save_inference_artifacts_path
는 입력하지 않으면 default 경로인train_artifacts
,inference_artifacts
폴더에 모델링 산 출물이 저장됩니다.
external_path:
- load_train_data_path: ./solution/sample_data/train
- load_inference_data_path: ./solution/sample_data/test
- save_train_artifacts_path:
- save_inference_artifacts_path:
파라미터명 | DEFAULT | 설명 및 옵션 |
---|---|---|
load_train_data_path | ./sample_data/train/ | 학습 데이터가 위치한 폴더 경로를 입력합니다.(csv 파일 명 입력 X) |
load_inference_data_path | ./sample_data/test/ | 추론 데이터가 위치한 폴더 경로를 입력합니다.(csv 파일 명 입력 X) |
사용자 파라미터(user_parameters
)
user_parameters
아래step
은 asset 명을 의미합니다. 아래step: input
은 input asset단계임을 의미합니다.args
는 input asset(step: input
)의 user arguments를 의미합니다. user arguments는 각 asset마다 제공하는 데이터 분석 관련 설정 파라미터입니다. 이에 대한 설명은 아래에 User arguments 설명을 확인해주세요.
user_parameters:
- train_pipeline:
- step: input
args:
- file_type
...
ui_args:
...
User arguments 설명
User arguments란?
User arguments는 각 asset 별 동작 설정을 위한 파라미터로 experimental_plan.yaml의 각 asset step의 args
밑에 기입해 사용합니다. AI Contents의 pipeline을 구성하는 asset마다 사용자가 다양한 기능을 데이터에 적용할 수 있도록 user arguments를 제공하고 있습니다. 사용자는 아래 가이드를 참고해서 user arguments를 변경, 추가하여 데이터에 맞는 모델링을 할 수 있습니다.
User arguments는 experimental_plan.yaml에 미리 작성되어있는 "필수 arguments"와 사용자가 가이드를 보고 추가하는 "Custom arguments"로 구분됩니다.
필수 arguments
- 필수 arguments는 experimental_plan.yaml에 바로 보여지는 기본 arguments 입니다. 대부분의 필수 arguments는 default 값이 내장되어 있습니다. default 값이 있는 arguments의 경우에는 유저가 별도로 값을 설정하지 않아도 기본 값으로 동작합니다.
- experimental_plan.yaml의 필수 arguments중 데이터 관련 arguments는 유저가 필수로 값을 설정해주어야 합니다. (ex. x_columns, y_column)
Custom arguments
- Custom arguments는 experimental_plan.yaml에 적혀있지 않지만, asset에서 제공하는 기능으로 사용자가 experimental_plan.yaml에 추가하여 사용할 수 있습니다. 각 asset 별 'args'에 추가하여 사용합니다.
FCST의 pipeline은 Input - Readiness - Preprocess - Modeling(train/inference) - Output asset 순으로 구성되어 있으며 각 asset의 기능에 맞추어 user arguments가 다르게 구성되어 있습니다. experimental_plan.yaml에 기입되어 있는 필수 user arguments를 먼저 사용해보시고, user arguments를 추가하여 데이터에 딱 맞는 CV 모델을 만들어보세요!
User arguments 요약
아래는 FCST의 user arguments 요약입니다. 'Argument 명'을 누르면 해당 arguments의 상세 설명으로 이동할 수 있습니다.